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Fig. 1: Stage 1.1. We use the ZED stereo camera for real-world object segmentation. Using camera calibration, we 
calculate depth from intrinsic and extrinsic parameters to generate a partial point cloud. A stereo camera setup 
simplifies the pipeline but sacrifices full object mesh reconstruction.

Ø Robotic manipulation often uses full object meshes or multi-view point 
clouds.

Ø Partial point clouds simplify the experimental setup but require a robust 
grasp generation method.

Ø Grasping is a significant part of solving functional grasping. Understanding 
object semantics and point level affordance is necessary.

Ø Developing a policy for robots to grasp small objects with precise, point-
level affordance is challenging.

Ø Sophisticated hand movements are difficult to control through teleoperation, 
making the task non-trivial for imitation learning [3].

Ø Generalization to other tasks or unseen objects remains an unsolved 
challenge.
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Background

Grasping with a robotic hand is a long-standing challenge. It can be categorized 
by factors such as object complexity, shape, and functionality. Our focus is on 
articulated objects, which have the following characteristics:

• Multiple affordances
• Revolute or prismatic joints
• Graspable
• Functional

Previous work has utilized various grippers to grasp and manipulate objects with 
differing complexities in affordances and articulation. However, these studies 
often overlook the functionality of the object, failing to demonstrate its proper 
use. To the best of our knowledge, our work is the first to utilize multi-affordance 
mask alignment for evaluation, complementing the robustness of stability and 
functionality with Intersection over Union (IoU) and Chamfer Distance metrics. 
Our method effectively assesses grasp functionality and execution using policy-
based learning, enabling robotic hands to grasp and functionally use objects.

Future Works

Ø Integrate the multi-affordance alignment metric as a loss function within 
SpringGrasp.

Ø Perform quantitative and qualitative comparisons between functional 
grasping and robust grasping.

Ø Simulate grasp vectors in the Isaac Gym environment and integrate the 
grasping pipeline with Isaac Gym.

Ø Develop a reward function and train the policy.
Ø Conduct extensive testing within the simulation on various objects (e.g., 

pliers, clips, spray bottles, drills, etc.).
Ø 3D print objects from the simulation for real-world testing, ensuring that the 

scale from object to hand to the real world is accurate.
Ø Implement Sim2Real transfer for real-world application.
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Methodology

Ø Affordance generalization and similarity between 3D affordance regions 
show reasonable accuracy compared to prior work [2].

Ø A multi-affordance alignment metric was developed to validate that stable 
grasps generated using the rigid body grasping method from [1] align with 
affordance regions.

Ø The metric distinguishes between stable, non-functional grasps and stable, 
functional grasps.

Ø This evaluation is critical for assessing grasp functionality beyond the 
common 'grasp and use' success rate.

Ø The novel evaluation criterion can also be integrated as a loss function to 
differentiate stable from functional grasps.

We decompose dexterous manipulation into two stages: the grasping stage and 
the post-grasp stage, which involves using the articulated object.

Fig. 2: Stage 1.2. The 2D segmented objects are hand-annotated to establish reference ground truth and object 
ground truth. The reference ground truth serves as the one-shot transfer target input, while the object ground truth 
is used to evaluate the Intersection over Union (IoU) of the affordance transfer method [2].

Fig. 3: Stage 1.3. The partial point cloud of objects is overlapped with ground truth and predicted affordance mask 
regions. The similarity between these masks in 3D space is evaluated using Chamfer Distance. Feasible functional 
grasps, generated by the optimization-based method [1] using object geometry, are filtered using a multi-
affordance metric.

Fig. 4: Stage 2. An overview of our approach. We train an oracle policy in simulation using reinforcement 
learning. We jointly optimize the privileged encoder using Proximal Policy Optimization (PPO).

Results

Ø 2D-based affordance generalization is effective within the same class of 
objects, accurately capturing their semantics.

Ø Chamfer distance is used to evaluate the similarity between partial point 
clouds of ground truth and predicted affordance masks.

Ø IoU (Intersection over Union) and Chamfer distance are complementary in 
their relationship:
§ Objects with clear semantics (e.g., pliers, clips) exhibit higher IoU and 

lower Chamfer distance.
§ Objects in the spray category (e.g., spray, drill, glue-gun) show the 

opposite trends, with lower IoU and higher Chamfer distance, due to 
the difficulty in generalizing their affordance regions in 2D space.

Fig. 6:  The figure presents a comparison of model performance using two metrics: Intersection over Union (IoU) 
on the left and Chamfer Distance on the right.

Fig. 7:  A side-by-side comparison of two grasps: a stable, non-functional grasp (left), a stable, functional grasp 
(right). The vectors yellow, red, green, and blue represent the thumb, index, middle, and ring fingers, respectively. 

Fig. 5: The agent learns by interacting with the environment: it takes an action based on the current state, receives 
a reward, and updates its policy to improve future decisions.

Fig. 9: The sequence from left to right illustrates the Allegro hand squeezing an articulated object. This example is 
manually generated and does not represent the outcome of a trained model.

Fig. 8: (a) The current Isaac Gym environment featuring a plier and the Allegro hand. (b) Color-coded tracking of 
Allegro hand fingertips, corresponding to vectors shown in Figure 7. (c) Real-world object manipulation using the 
Allegro hand and SpringGrasp.

Ø We plan to use PPO to improve the policy in a stable and effective way. This 
method carefully adjusts the policy by considering both the potential benefits 
and limitations of each action.

Ø The reward function is designed to optimize grasping performance by 
rewarding grip success and squeeze force while penalizing slippage.

Ø Leveraging Isaac Gym's high-fidelity simulation environment, PPO efficiently 
trains the policy in parallel across multiple environments, accelerating the 
learning process for complex manipulation tasks.
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